Вопрос о том, каково расстояние до Солнца волновал ученых и астрономов всего мира с самых давних времен. По поводу этого вопроса были найдены документы из древней Греции и Китая, содержащие разные схемы и формулы.
Однако тогда оборудование и методы измерения были очень примитивными, поэтому точных результатов добиться было невозможно.
Но человек становился все изобретательнее, и после многих столетий мы наконец разгадали эту тайну, о чем и пойдет речь в данной статье.
Точное расстояние на сегодняшний день
Расстояние от Земли до Солнца постоянно меняется в пределах от 147 093 163 км в январе до 152 100 527 км в июле из-за эллиптической орбиты нашей планеты (данные на 2022 год). Это означает, что расстояние до Солнца меняется каждую секунду.
Среднее расстояние от Земли до Солнца составляет примерно 149,6 млн. км. Это является средним и общепринятым, но не последним значением, т.к.
траектория орбиты Земли немного меняется каждый год из-за гравитационного воздействия ее естественного спутника – Луны.
Каждые 100 лет наша планета отдаляется от Солнца примерно на 15 метров.
Астрономическая единица
Астрономическая единица была утверждена в 2012 году Международным астрономическим союзом для того, чтобы определять расстояние между небесными телами, которые расположены вблизи нашей планеты. Она представляет собой среднее расстояние от Земли до Солнца и равняется 149 597 870,7 км.
Над её выведением с древности работали следующие выдающиеся ученые:
- Аристарх Самосский;
- Гиппарх Никейский;
- Кристиан Гюйгенс;
- Джовани Кассини;
- Жан Рише;
- Николь Капитэн.
Если расстояние от Солнца до нашей планеты составляет 1 АЕ, то для Юпитера этот показатель составляет 5,2 АЕ, а для Нептуна – 30,1 АЕ.
Расстояние от Солнца до планет Солнечной системы в астрономических единицах
В соответствии с Международным стандартом обозначается как «ua», что является сокращением с английского «astronomical unit». В литературе также допускаются два других типа обозначений – через точку («u.a.») или в виде заглавных букв («UA»).
Приливы и отливы
Несмотря на сравнительно небольшой размер Луны и ее далекое расстояние от Земли, она все равно оказывает значительную гравитационную тягу на нашу планету. Это влияет на уровень мирового океана, вызывая приливы и отливы в разных областях. Там, где воздействие Луны сильнее, происходит прилив, где слабее – отлив.
Полной водой и малой водой называются соответственно периоды, когда уровень воды наивысший и наименьший. Разница между малой и полной водой называется высотой прилива.
Самые сильные подъемы в уровне воды происходят при Сизигийном приливе, когда Солнце вместе с Луной оказывает тягу на Землю в одном направлении. Когда приливы самые незначительные, силы притяжения Солнца и Луны действуют под углом в 90 градусов друг к другу. Это называется Квадратурным приливом.
Афелий и перигелий
Наша планета вращается вокруг Солнца, но нельзя сказать, что она всё время вращается вокруг звезды на одном и том же расстоянии. Периодически, каждые полгода, планета то находится на минимальном расстоянии от Солнца, в перигелии, то отдаляется от светила еще на 5 млн км, и занимает максимально отдаленную позицию – афелий.
Точка в космическом пространстве, приходя в которую, планета становится наиболее близка к единственной звезде Солнечной системы, называется перигелием. Перигелий Земли равняется 147 млн км, и в него планета приходит зимой, а именно – со 2-го по 5-ое января.
Афелий – это точка, в которой Земля находится на расстоянии в 152 млн км от Солнца. В это время расстояние до звезды достигает максимального значения, и оно имеет угол смещения в 31’28 градусов. Это на 3% меньше видимого диаметра Солнца, когда оно находится в перигелии.
Также стоит отметить, что происходит с Землей, когда она находится в афелии и перигелии. Когда Земля в первой позиции, то она получает на 7% меньше солнечного света. Эта разница влияет на расхождение температур в северном и южном полушариях планеты: в северном полушарии зима более щадящая, чем в южном, а лето в южном полушарии жарче, чем в северном.
Измерения расстояния до солнца в древней Греции
Во времена существования Древней Греции одной из самых важных наук была геометрия. Благодаря широким познаниям в этой области науки древние греки смогли сделать множество астрономических открытий, в том числе и измерить расстояние до Солнца, без каких-либо специальных инструментов. Главным методом исследования звездного пространства было наблюдение за небом.
Предположения Аристарха Самосского
Древних греков также интересовал вопрос удаленности светила от Земли, однако до наших дней дошло очень мало работ. Одной из них является запись Аристарха Самосского, жившего в III веке до н.э. В ней он отобразил размеры Земли, Солнца и Луны, а также расстояние между ними.
Главным отличием в работе этого древнегреческого ученого была научная обоснованность, а не только догадки. Он сделал это с помощью геометрических формул, что было необычным подходом для того времени, когда в большей степени ценились теории и предположения.
Сначала он провёл наблюдения за фазами Луны, ее движением, а также отследил солнечные и лунные затмения.
Затем применил теорему Пифагора, взяв за основания треугольника расстояния между Луной и Землей, а также Луной и Солнцем, а в качестве гипотенузы расстояние от Земли до Солнца.
На основе этих данных Аристарх Самосский не только предположил, но и обосновал то, что Луна имеет форму шара. После этого математик определил отношения упомянутых небесных тел между собой и выяснил, что Солнце находится в 20 раз дальше от планеты, чем Луна.
Современные ученые проверили записи Аристарха Самосского и сделали вывод, что тот ошибся – в реальности звезда в десятки раз больше, чем в его вычислениях. Тем не менее, в своё время работа древнегреческого ученого внесла большой вклад в изучение Солнечной системы и всех небесных тел, которые находятся в ней.
Измерения Гиппарха Никейского
Гиппарх Никейский, живший во II веке до н.э., считается одним из основоположников астрономии. Его вклад в эту науку заключается в следующем:
- введение тригонометрических методов при изучении звёзд;
- увеличении точности измерений благодаря применению специальных приспособлений – секстанта и квадранта;
- создание каталога звезд;
- создание системы звёздных величин;
- расчет прецессии равноденствий;
- теории о затмениях.
Гиппарх Никейский
Также этот древнегреческий ученый затронул вопрос о расстоянии от Солнца до Земли.
Он взял за основу то, что светило находится дальше спутника Земли, и предположил, что минимальное расстояние до Луны составляет 71 радиус Земли, а максимальное – 83.
Затем, используя уже полученные данные и наблюдения за солнечными созвездиями, Гиппарх Никейский выдвинул теорию, что дистанция до Солнца составляет от минимума в 490 земных радиусов (3,115 млн. км.) до максимума в 2550 (16,21 млн. км.).
Расчеты нового времени
Во время научной революции XVII века у ученых снова загорелся интерес к вопросу о расстоянии до Солнца. Иоганн Кеплер первым стал оспаривать предположения древнегреческих астрономов. Он заявлял, что они слишком заниженные.
Так как тогда появились телескопы, астрономы могли работать с гораздо более точными данными, чем в античные времена. Самым первым измерением, близким к современному, было предположение Кристиана Гюйгенса, голландского ученого, отличающееся от актуальной длины всего на 7%. Со временем измерения получались все точнее.
Метод прямоугольных треугольников Кристиана Гюйгенса
Для определения расстояния до Солнца Гюйгенсу был нужен прямоугольный треугольник, коротким катетом которого будет точное расстояние до любого другого небесного тела. Для этого Гюйгенс выбрал Венеру.
Наблюдая за фазами Венеры, Гюйгенс построил прямоугольный треугольник, где прямой угол был Солнце – Венера – Земля. Он так же легко нашел угол Солнце – Земля – Венера. Теперь ему только осталось найти расстояние между двумя планетами, для чего нужно было сначала знать размеры Венеры.
На этом этапе вычисления Гюйгенс сделал абсолютно не основанное на науке предположение, что Венера и Земля имеют почти одинаковый размер, но несмотря на это оказался прав – обе планеты в самом деле очень похожи в размерах.
Определив расстояние между этими двумя небесными телами, Гюйгенс приступил к вычислению гипотенузы треугольника, и получил ответ 160 млн. км.
Измерения Кассини и Рише
Также об астрономической единице измерения говорили Джованни Кассини и Жан Рише. Они озадачились вопросом измерения расстояния в космосе.
Для определения расстояния между нашей планетой и Солнцем ученые решили использовать метрическую систему.
Для своего опыта они сначала с помощью метода суточного параллакса записали расстояние от Земли до Марса, а затем – до единственной звезды нашей планетной системы. В 1672 году напарники выдвинули чёткие цифры – 140 миллионов километров.
Джованни Кассини
Это значение считалось наиболее точным вплоть до XX века. Такой длинный промежуток объясняется отсутствием необходимых приспособлений и техники которые могли бы дать чёткую информацию о расстоянии между небесными телами с наименьшей погрешностью.
Метод параллакса
Параллакс является видимым смещением наблюдаемого объекта в зависимости от положения точки наблюдения. Если знать расстояние между этими двумя точками и угол смещения объекта между ними, то можно использовать законы геометрии и тригонометрии для определения расстояния до него.
Впервые этот способ использовался древнегреческими астрономами, а затем учеными нового времени. Для этого чаще всего использовались два ориентира, между которыми предварительно было измерено расстояние по прямой.
Ученые соглашались измерять относительный угол между объектом и Землей одновременно, после чего они совмещали свои результаты и вычисляли дистанцию до объекта.
Для выяснения удаленности планет друг от друга и создания специальных приборов этим методом пользовались следующие астрономы:
- Галилео Галилей;
- Джованни Кассини;
- Жан Рише;
- Иоганн Франц Энке;
- Карл Густав Витт.
Благодаря точности данного метода удалось создать такой астрономический инструмент как телескоп, также были добыты новые данные об удаленности Марса, Венеры, Солнца и открыт астероид Эрос.
Метод стандартных свечей
Данный метод следует закону светопередачи – яркость света обратно пропорциональна квадрату расстояния от его источника. Если узнать частоту электромагнитного излучения объекта, можно узнать его температуру в кельвинах, а, следовательно, и светоотдачу. Этот способ используется современными учеными для определения дистанции до очень отдаленных звезд и галактик.
Так как Солнце является одной из самых хорошо изученных звезд, вычислить среднее расстояние до Солнца сравнительно просто – это будет 497 световых секунд, или 149 млн. км.
Световая секунда – 299 792,46 км. Самая малая космическая единица измерения. Эту дистанцию луч света преодолевает за одну секунду.
Исследования новейшего времени
Так как человечество изобрело новые методы расчета расстояний, такие как лазерный дальномер и радиолокация, удаленность от космических тел теперь можно рассчитывать с очень высокой точностью. В качестве опорной точки для измерения опять использовалась Венера. Получив точную дистанцию до нее, ученые в 1961 году легко вычислили искомую величину – т.е. дистанцию до Солнца.
Но на этом исследователи останавливаться не будут. Совсем недавно НАСА запустила в космос Parker Solar Probe – зонд для подробного изучения солнечных явлений. Зонд способен выдерживать температуры до 1450°C, и это позволит ему приблизиться к Солнцу максимально близко (в итоге между ними будет всего 6 млн. км.)
Метод радиолокации
В начале XX века появились первые радиолокаторы. Благодаря способности измерять расстояния, их начали применять для изучения космоса.
Вопрос о том, каково точное расстояние между небесными тела, продолжал волновать умы ученых разных областей, и потому с 1946 года астрономы начали активно применять радиолокаторы для уточнения астрономической единицы.
Нужно было послать длинную сильную радиоволну, так как остальные терялись на фоне электромагнитного поля Солнца.
В1961 году наконец удалось получить результат, и миру стала известно среднее расстояние до Солнца – 149 599 300 км. Тем не менее, при расчётах имела место быть погрешность. Она составила 2 тыс.
км, поэтому на следующий год исследование было проведено повторно, и снова ученые добыли новые данные, в соответствии с которыми удаленность планеты от Солнца составила 149 598 100 км.
На этот раз погрешность была всего в 750 км, что в сравнении с предыдущим опытом было более точным результатом.
Определение дистанции лазером
Раньше лазерные дальномеры имели незначительную погрешность в 1.5-2 метра на расстоянии 1000 км. Сегодня же они обладают удивительной точностью. На этой же дистанции погрешность составляет всего 10 мм. Это позволяет делать высокоточные измерения до астрономических объектов.
Используя лазер и искусственные отражатели, установленные на поверхности Луны, исследователи смогли получить сверхточный результат с погрешностью в несколько сантиметров. Такие четкие измерения послужат надежной опорой в будущих расчетах.
Единицы измерения космических расстояний
- Астрономическая единица – 150 миллионов км – расстояние от Земли до Солнца. Используется для измерения дистанций в Солнечной Системе.
- Световой год – 9,46 триллионов км. Дистанция, которую свет преодолевает за один год. Применяется для измерения расстояний между звездами.
- Парсек – 206 тыс. астрономических единиц или 3.26 световых лет. Длинный катет прямоугольного треугольника, короткий катет которого равен одной астрономической единице, а лежащий напротив него угол равен угловой секунде (1/3600 одного градуса).
Не многие задумываются о том какое расстояние от нашей планеты до Солнца.
Нам остается только удивляться, каким пытливым умом обладает человек, и какими умными, изобретательными и терпеливыми были ученые древних времен, которые находили близкие к правде ответы на самые сложные загадки Вселенной.
А вы знали, что всё было настолько трудно или считали, что все было точно известно уже в Древней Греции?
Как измерили расстояние до Солнца
Сегодня, когда астрономию вернули в школьную программу, любой старшеклассник (ну, в теории, любой) должен знать: расстояние от нашей планеты до Солнца составляет примерно 149,5 млн километров. Это расстояние еще принято называть астрономической единицей. Но, понятно, что этот ответ как-то надо было получить и астрономам потребовалось на это несколько шагов, растянувшихся не одно тысячелетие. Ниже — о каждом шаге подробнее. Шаг первый – безбожник Аристарх и Луна Аристарх Самосский жил в III веке до нашей эры и был по-настоящему выдающимся астрономом. Задолго до Коперника он построил гелиоцентрическую модель устройства мира. Довольно точно определил продолжительность года в 365 + (1/4) + (1/1623) дней. Усовершенствовал солнечные часы. А еще он предпринял попытку измерить расстояние от Земли до Солнца и Луны. Этому Аристарх посвятил целый трактат (кстати, единственная письменная работа этого автора, дошедшая до нас). С Луной у него получилось довольно близко к правильному ответу: 486400 км (по расчетам Аристарха), 380000 км (среднее расстояние по современным данным). Спустя сто лет другой античный астроном Гиппарх, кстати, уточнил эти цифры. А вот с Солнцем у Аристарха получилась нехилая промашка. Но сначала о том, как вообще древнегреческий астроном измерял это расстояние. Известно, что иногда Солнце и Луну можно наблюдать одновременно. Причем, бывают моменты, когда Солнце освещает ровно половину Луны. Тогда угол «Земля-Луна-Солнце» — прямой, и измеряя угол «Луна-Земля-Солнце» можно с помощью тригонометрических соотношений, зная расстояние Земля-Луна, найти расстояние Земля-Солнце.
Но «гладко было на бумаге». Во-первых, Аристарху надо было поймать момент, когда освещена ровно половина Луны, а сделать это без телескопа было практически невозможно. А во-вторых, опять же без серьезной измерительной аппаратуры, точно измерить все параметры. Не удивительно, что грек ошибся, причем, очень сильно: угол α у него получился целых три градуса (в реальности он равен 10 минутам), а расстояние до Солнца всего 7,5 млн километров. Опираясь на это расстояние, Аристарх пришел к выводу, что Солнце намного больше Земли. Это и стало главным аргументом его гелиоцентризма (в центре мироздания должен быть самый большой объект). Впрочем, ошибка в определении расстояния большой роли в науке не сыграла, вычисления Аристарха вообще не получили широкой известности (даже среди образованной части населения античных городов). Причина была скорее политической, все дело в его гелиоцентрической модели мироздания. Она противоречила геоцентрической модели, которой придерживался тогдашний научный консенсус. И есть упоминания, что его даже пытались привлечь к суду как безбожника. Спустя некоторое время сначала Гиппарх подверг критике его взгляды, а позже Птолемей (чья геоцентрическая модель успешно дожила до Коперника) и вовсе проигнорировал результаты Аристарха, способствуя их забвению на долгое время.
Шаг второй — смотрим на Венеру (Кеплер и Хоррокс)
Человечеству потребовалось почти две тысячи лет, чтобы сделать этот следующий шаг к ответу, но будем справедливы, это было нелегкое время и хватало других проблем. И для начала, надо было выбрать другой объект, на который опираться в своих вычислениях. В 1626 году известный немецкий астроном и математик Иоганн Кеплер предложил в качестве кандидата Венеру. К тому времени астрономы уже знали про одно довольно редкое астрономическое явление – прохождение Венеры по диску Солнца, причем, оно случается дважды с разницей в несколько лет, а потом следует значительный перерыв. Предложенный Кеплером метод заключался в следующем: надо измерить время прохождения Венеры по диску Солнца из разных точек Земли. И сравнивая эти времена можно найти расстояние от Земли до Венеры и до Солнца. Впрочем, это только звучит просто. Как минимум, надо было дождаться этого явления. Это удалось британскому астроному Джереми Хороксу, который переписывался с Кеплером и знал про его метод. Сначала британец уточнил частоту этого явления: «дубль» случается с разницей в восемь лет каждые полтора столетия. И ближайшее должно было состояться в 1639 году. Хоррокс подготовился к этому событию, он наблюдал за небом из своего дома в Мач Хул, близ Престона, а его друг делал то же самое из Солфорда, близ Манчестера. Сначала, казалось, что удача от них отвернулась, поскольку в этот день была сильная облачность, но за полчаса до захода Солнца облака разошлись и пара астрономов сумела-таки осуществить свой план. На основании наблюдений, Хоррокс рассчитал, что нашу планету от Солнца отделяет 95,6 млн км. Это было уже гораздо ближе к истине, но все равно неверно.
Шаг третий – смотрим на Марс (Кассини)
До следующего венерианского «дубля» надо было ждать полтора века и пока шло время астрономы тратили его на поиск других способов вычислить искомое расстояние. И это удалось французскому астроному итальянского происхождения Джованни Доменико Кассини. Он вообще отметился в астрономии как талантливый наблюдатель (например, это он первым увидел Большое Красное пятно на Юпитере). К тому времени астрономы уже оценили возможности, которые дает одновременное наблюдение за одним и тем же объектом из отдаленных друг от друга мест. В 1672 году Кассини на пару с другим французским астрономом Жаном Рише осуществили такой проект: первый остался в Париже, а второй отправился в Южную Африку, где у Франции были свои колонии. Они одновременно наблюдали Марс и, вычислив параллакс, определили его расстояние от Земли. Параллакс, если кто не знает, это смещение или разница в видимом положении объекта, рассматриваемого на двух разных линиях зрения. Ну а вычислять расстояние до объекта по параллаксу умели уже давно. И поскольку относительные отношения различных расстояний между Солнцем и планетами уже были известны из геометрии, рассчитав по параллаксу расстояние до Марса, Кассини смог сделать то же самое и для Солнца. Его результат — 146 млн км – был уже очень близок к современным оценкам. Что интересно, в то время, когда Кассини проводил эти расчеты, он был приверженцем геоцентрической системы, то есть, расстояния он получал близкие к верным, но карту Солнечной системы строил по старинке, с Землей в центре. Позже он признал правоту Коперника, но в ограниченной степени.
Шаг четвертый – снова Венера и астрономы всего мира
Тем временем близился очередной венерианский «дубль» (в 1761 и 1769 годах) и астрономы были намерены выжать из этого события максимум. Чтобы не зависеть от погодных условий и собрать данные с разных точек на Земле, был организован большой международный проект (его считают чуть ли не первым в истории) под эгидой Французской академии наук. Заблаговременно были подготовлены и отправлены научные экспедиции к местам наблюдений. Не все закончилось гладко – экспедиция, отправленная в Новую Гвинею, без вести пропала в джунглях. Но в целом проект удался. Кстати, активно в нем участвовала и Россия. В нашей стране им руководил человек необычайных талантов и энергии – Михайло Ломоносов (это он, кстати, обнаружил атмосферу на Венере). Ломоносову удалось получить аудиенцию у императрицы Екатерины II и убедить ее в важности этой работы как для науки, так и для государственного престижа. Получив поддержку казны, Ломоносов смог развернуть на территории Российской империи 40 наблюдательных пунктов. На один из них, вблизи Петербурга, приезжала сама Екатерина и с интересом смотрела в телескоп.
Вот в итоге этой большой работы астрономов по всему миру и было получено то число, которое сегодня включено в учебники.
Но нет предела совершенству, и еще через сто пятьдесят лет, 8 декабря 1874 года и 6 декабря 1882 года, очередные прохождения Венеры по диску Солнца вновь наблюдали научные экспедиции по всему миру, уточняя полученные данные.
А потом еще раз в 2004 и 2012 году. Впрочем, в ходе этих наблюдений получали и другие полезные данные, но это уже другая тема.
Сколько километров до Солнца?
Солнце находится на расстоянии 8-ми световых минут от Земли – наверняка все запомнили это утверждение со школьных уроков астрономии. Но представить это число нам непросто, ведь привычнее измерять дистанцию в метрах или километрах. Проблемой космических расстояний астрономы занимаются с древних времен.
Попытки ученых измерить расстояние до Солнца
Солнце испокон веков интересовало людей.
Даже древнейшее население нашей планеты понимало, что этот яркий диск, ежедневно появляющийся на небе, имеет огромное значение для жизни, ведь он дает тепло и свет.
Долгое время Солнце фигурировало в различных культурах и мифологиях. С научной точки зрения на огненный шар впервые взглянул Анаксагор – древнегреческий философ, который жил в 500-428 гг. до н. э.
А в 310-230 гг. до н. э. при участии астронома Аристарха Самосского зародилась гелиоцентрическая система мира, согласно которой Солнце является центральным объектом, а вокруг него вращаются планеты. Николай Коперник в 16-м веке возродил эту идею и стал известен в качестве автора системы.
Измерение расстояний до Солнца с помощью Луны
Аристарх Самосский также стал первым человеком, который попытался понять, насколько далеко Солнце находится от Земли. Для этого он использовал Луну – измерил угол между ней и звездой, определил расстояние от Земли до Луны, а затем и до Солнца при помощи математических расчетов. Но измерения оказались ошибочными – всего 7,5 млн км.
Интересный факт: о работе Аристарха практически никто не узнал. Все дело в том, что он был приверженцем гелиоцентрической системы мира. А в научной среде того времени принято было считать, что все остальные объекты вращаются вокруг Земли (геоцентрическая система). На астронома обрушилась критика со стороны, к примеру, Гиппарха и Птолемея.
Следующую попытку предприняли Иоганн Кеплер и Джереми Хорокс. Точнее, Кеплер предложил в качестве ориентира взять Венеру. Тогда ученые уже знали об интересном явлении: периодически планета проходит по диску Солнца.
Надо было дождаться этого момента и измерить из разных частей Земли, сколько времени ей на это потребуется. Хорокс поддержал метод Кеплера и установил, что Солнце находится на расстоянии 95,6 млн км.
Показатель был уже ближе к настоящей цифре, но все еще неверным.
Интересно: Солнце: строение, характеристики, интересные факты, фото, видео
Более-менее успешно с этой задачей справились астрономы Кассини и Рише в 1672 г. В качестве ориентира они использовали Марс. Ученые этого времени были уже хорошо знакомы с понятием параллакса. Он показывает, как меняется положение объекта в зависимости от того, где находится наблюдатель, по отношению к удаленному фону.
Схема параллакса
Кассини вел наблюдения в Париже, а Рише – в Южной Африке. Так было установлено расстояние до Марса, а затем и до Солнца – 146 млн км. Таким образом, ученые максимально приблизились к правильной цифре. Примечательно, что Кассини был сторонником геоцентрической системы, поэтому на его картах расстояния указывались относительно верные, но в центре находилась Земля.
Сколько километров до Солнца? Современные способы определения расстояний
Среднее расстояние от Земли до Солнца составляет 150 млн км. Это число постоянно меняется то в большую, то в меньшую сторону, поскольку орбита нашей планеты не круглая, а в форме эллипса. Минимальное расстояние отмечается в январе (перигей, 147 млн км), а максимальное – в июле (афелий, 152 млн км).
Сравнение расстояний до Солнца и Луны
Методом тригонометрического параллакса ученые пользуются и сейчас, но только для объектов, находящихся на сравнительно небольшом расстоянии. Для отдаленных небесных тел больше подходит метод стандартных свечей. Так называют объекты, светимость которых известна. При этом астрономы оценивают видимую яркость и вычисляют расстояние до тела с помощью закона обратных квадратов.
Еще один способ определения удаленности объекта – радиолокационный. В направлении тела отправляется импульс, который частично отражается и возвращается на Землю. Специальная техника определяет, сколько времени потребовалось импульсу на это перемещение, что позволяет выяснить и расстояние.
Расстояние между Землей и Солнцем
Попытки рассчитать расстояние от Земли до Солнца и прогнозировать связанные с ним явления начали предпринимать в Древней Греции.
Тогда были произведены приблизительные вычисления, которые стали основой для последующего развития астрономической науки.
Современным ученым уже доступны технологии, которые позволяют определять расстояние до Солнца с погрешностью до нескольких долей сантиметра.
https://www.youtube.com/watch?v=4KxNh7vEbWs\u0026pp=ygW0AdCg0LDRgdGB0YLQvtGP0L3QuNC1INC-0YIg0JfQtdC80LvQuCDQtNC-INCh0L7Qu9C90YbQsCDQsiDQutC40LvQvtC80LXRgtGA0LDRhTog0YHQutC-0LvRjNC60L4g0YHQvtGB0YLQsNCy0LvRj9C10YIg0YHRgNC10LTQvdC10LUg0Lgg0LzQuNC90LjQvNCw0LvRjNC90L7QtSDQsiDQutC8INC4INC80LXRgtGA0LDRhQ%3D%3D
Современные технологии позволяют определить расстояние с невероятной точностью. Credit: informys.ru.
Точное расстояние на сегодняшний день
Расстояние между центрами Земли и Солнца принято считать равным 149 597 870 км, но этот показатель условен. Планета совершает движение по эллиптической орбите, поэтому ее удаленность от звезды постоянно меняется.
Понятие астрономической единицы
Расстояние, на которое удалено Солнце от Земли, называют астрономической единицей. С ее помощью принято совершать измерения дистанций между космическими объектами. Русское обозначение единицы — а.е., в международном формате — au.
Решением Международного астрономического союза с 2012 г. астрономическая единица привязана к Международной системе единиц (СИ) и равна 149 597 870 700 м. Данный показатель используется для вычислений, не требующих высокой точности. В ином случае рассчитывается величина для нужного момента времени.
Современные технологии космической отрасли позволяют определять величину астрономической единицы с высокой точностью. Наблюдая за изменениями ее значения, в 2004 г. российские ученые Г. Красинский и В.
Брумберг обнаружили, что Земля и Солнце расходятся. Постепенное отклонение объектов незначительно и составляет около 15 см ежегодно. Причина явления пока не установлена, но выдвинуто много интересных гипотез.
Влияние приливов и отливов на дистанцию
По мнению команды японского астрофизика Такахо Миура, расхождение рассматриваемых космических объектов объясняется приливным взаимодействием. Невзирая на малые размеры планеты относительно Солнца, она должна порождать в теле звезды приливы, т. к.
более близкие участки светила притягиваются немного сильнее, чем дальние. Подобные приливы передвигаются по поверхности и тормозят вращение объекта.
Поскольку полный момент импульса системы Земля-Солнце сохраняется, происходит незначительное расширение гелиоцентрической орбиты.
Аналогичным образом взаимодействуют Земля и Луна. Отклонения орбиты спутника вызывают на планете ежедневные океанические приливы, что приводит к удлинению суток на 1,7 мс за столетие. При этом расстояние между объектами увеличивается на 4 см ежегодно.
Афелий и перигелий
Афелий и перигелий характеризуют максимальный и минимальный параметры удаленности Земли от звезды. Это связано с эллиптической формой орбиты Земли.
Афелий, или апогелий — это дальняя точка гелиоцентрической орбиты Земли, которая удалена от Солнца на 152 098 233 км. Термином «афелий» астрофизики называют точку гелиоцентрической орбиты любого космического тела, которая находится максимально далеко от нашей звезды. Земля максимально отдаляется от Солнца в период с 3 по 7 июля.
Соответственно, перигелий — ближайшая точка, которая располагается на расстоянии 147 098 291 км от звезды. Земля ежегодно проходит эту отметку со 2 по 5 января.
Афелий и перигелий параметры максимальной и минимальной удалённости от Солнца. Credit: avatars.mds.yandex.net.
Измерения расстояния до Солнца в Древней Греции
Древнегреческие ученые стали первопроходцами в вопросе определения расстояния от Земли до Солнца. В то время они располагали лишь простым инструментарием и геометрическими методами.
Предположения Аристарха Самосского
Первым попытался рассчитать расстояние до Солнца Аристарх Самосский, древнегреческий астроном III в. до н.э. Он описал гелиоцентрическую систему мироустройства и применил знания геометрии для определения величин небесных тел и дистанции между ними.
Основой для его вычислений стало предположение, что шарообразная Луна отражает солнечный свет. Когда она будет располагаться в половине фазы, можно провести прямой угол Земля-Луна-Солнце. При этом сторона Земля-Луна является катетом, а Земля-Солнце — гипотенузой.
Согласно идее Аристарха, расстояние до звезды выражается отношением катета к гипотенузе и составляет 1:19. Данный результат отличается от действительных значений в 20 раз, что связано с неточными расчетами.
Аристарх брал за основу данные визуальных наблюдений, что всегда чревато большими погрешностями.
https://www.youtube.com/watch?v=4KxNh7vEbWs\u0026pp=YAHIAQE%3D
Аристарх Самосский предположил, что расстояние от Земли до Солнца-это отношение катета к гипотенузе. Credit: wikireading.ru.
Измерения Гиппарха Никейского
Величайшим астрономом античности называли Гиппарха Никейского — древнегреческого математика II в. до н.э. Он привнес в астрономические вычисления более точные методы древневавилонских исследователей.
Фундаментом метода Гиппарха стало понимание причины лунных затмений, заключающейся в том, что спутник оказывается в тени нашей планеты. При этом тень имеет коническую форму с вершиной, расположенной ближе к Луне.
Применив простейшие измерительные инструменты, астроном вычислил радиусы исследуемых объектов. Используя правила подобия треугольников, он смог определить удаленность Солнца. Полученное значение составило 382 тыс. км.
Результаты Гиппарха были признаны самыми точными за период древней истории.
Расчеты Нового времени
Исследователи Нового времени подошли к расчетам космических расстояний более скрупулезно. Большинство их трудов обладали высокой точностью и признаны научными кругами тех лет.
Метод прямоугольных треугольников Кристиана Гюйгенса
Нидерландский ученый Кристиан Гюйгенс в 1653 г. предпринял попытку произвести собственные расчеты. Его методика оказалась похожа на подход Аристарха Самосского.
Гюйгенс также применил метод исследования прямоугольного треугольника, только для системы Земля-Венера-Солнце. Случайно угадав величину Венеры, он произвел вычисления.
Научные круги не восприняли измерения астронома всерьез, посчитав их догадкой.
Измерения Кассини и Рише
В 1672 г. Джованни Кассини, находясь в Париже, проводил наблюдения за движением Марса по звездному небу. Аналогичные исследования он поручил своему помощнику Жану Рише, отправив коллегу в Гвиану.
Для измерений Кассини использовал расположение звезд, окружающих Марс, а затем сопоставил данные с наблюдениями Рише. Ученому удалось определить длину отрезка Земля-Марс, на основе которой он смог вычислить дистанцию Земля-Солнце. Астроном использовал научные методы, благодаря чему результаты его работы были признаны.
Метод параллакса
В своих экспериментах Кассини и Рише использовали явление параллактического смещения — видимого изменения положения космического тела относительно фоновых объектов, отдаленных от него на некоторое расстояние. Смещение становится очевидным, когда наблюдатель меняет точку обзора.
Метод позволяет посредством простых геометрических вычислений найти расстояние до небесного тела. Необходимо знать лишь величину смещения наблюдателя и угол смещения исследуемого объекта относительно его фона.
Метод стандартных свечей
Посредством тригонометрических параллаксов определяются расстояния до близких космических объектов. Для измерения дистанций тел, удаленных на большое расстояние, применяется метод стандартных свечей. Он учитывает правило, согласно которому освещенность уменьшается обратно пропорционально квадрату расстояния.
В качестве стандартных свечей выступают звезды. Поскольку светила с идентичной температурой и размерами излучают одинаковую энергию, однотипные звезды используются для определения расстояний. Зная удаленность и величину энерговыделения Солнца, можно вычислить расстояние до похожих звезд.
Исследования Новейшего времени
Технологии Новейшего времени произвели революцию в астрономических исследованиях, позволив получить максимально точные данные о расстояниях в космосе.
Метод радиолокации
Измерение расстояния с помощью радиолокации базируется на передаче импульсов к небесному телу. Отправленные волны отражаются от объекта и возвращаются. После этого анализируется их интенсивность и время движения, на основании чего рассчитывается пройденная дистанция.
Сложность использования метода радиолокации состоит в том, что интенсивность волн уменьшается обратно пропорционально четвертой степени расстояния до изучаемого объекта. Для решения задачи приходится создавать мощные передатчики и большие антенны. Но затраты оправдываются высокой точностью полученных данных. Погрешность составляет несколько километров.
Определение дистанции лазером
В Солнечной системе есть несколько способов для определения расстояния до звезды. Credit: marsplaneta.ru.
Принцип лазерной локации идентичен радиоволновому методу. Мощный передатчик направляет к небесному телу световой луч, который отражается от него и возвращается на Землю. Интенсивность и время его прохождения учитываются при расчете расстояния.
Данный метод отличается высокой точностью и позволяет получать данные с погрешностью до нескольких долей сантиметра, но для реализации метода требуется технологически сложное и дорогостоящее оборудование.
Единицы измерения космических расстояний
Для оперирования гигантскими космическими расстояниями земные меры не подходят. В астрономии существуют три главные единицы измерения:
- Астрономическая единица — составляет 149,6 млн км.
- Световой год — составляет около 9 460 730 472 580 800 м и представляет собой пройденное световой волной за юлианский год расстояние.
- Парсек — примерно равен 3,26 светового года и определяется как дистанция, с которой радиус орбиты Земли виден под углом в 1 секунду дуги. Данная мера применяется профессиональными астрономами вместо светового года.
Астрономическая единица используется для вычисления дистанций в пределах Солнечной системы, а световой год и парсек — для оценки межзвездных космических расстояний.